65 research outputs found

    Evolution of xyloglucan-related genes in green plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms.</p> <p>Results</p> <p>In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall.</p> <p>Conclusions</p> <p>Our data support the idea that a primordial xyloglucan-like polymer emerged in streptophyte algae as a pre-adaptation that allowed plants to subsequently colonize terrestrial habitats. Our results also provide additional evidence that charophycean algae and land plants are sister groups.</p

    Extensive Natural Epigenetic Variation At A De Novo Originated Gene.

    Get PDF
    Epigenetic variation, such as heritable changes of DNA methylation, can affect gene expression and thus phenotypes, but examples of natural epimutations are few and little is known about their stability and frequency in nature. Here, we report that the gene Qua-Quine Starch (QQS) of Arabidopsis thaliana, which is involved in starch metabolism and that originated de novo recently, is subject to frequent epigenetic variation in nature. Specifically, we show that expression of this gene varies considerably among natural accessions as well as within populations directly sampled from the wild, and we demonstrate that this variation correlates negatively with the DNA methylation level of repeated sequences located within the 5'end of the gene. Furthermore, we provide extensive evidence that DNA methylation and expression variants can be inherited for several generations and are not linked to DNA sequence changes. Taken together, these observations provide a first indication that de novo originated genes might be particularly prone to epigenetic variation in their initial stages of formation.9e100343

    Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (<it>Saccharum spp</it>.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species.</p> <p>Results</p> <p>In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species <it>S. officinarum </it>and <it>S. spontaneum</it>. Using sugarcane <it>MIR827 </it>as a query, we found a novel <it>MIR827 </it>precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as <it>SsCBP1</it>. <it>SsCBP1 </it>was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of <it>SsCBP1 </it>by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots.</p> <p>Conclusions</p> <p>Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.</p

    Phylogenetic relationships between Arabidopsis and sugarcane bZIP transcriptional regulatory factors

    Get PDF
    We built a complete and non-redundant database of bZIP transcriptional regulatory factors from the Arabidopsis reference genome. These Arabidopsis bZIP factors were ordered into thirteen families of evolutionary related proteins and this classification was used to identify and organize sugarcane cDNAs encoding bZIP proteins. We also show how this classification should help in defining putative clusters of orthologous groups of higher plant bZIP regulators and briefly discuss the expected benefits of this procedure to efficiently characterize sugarcane bZIP transcriptional regulators.Construímos um banco de referência não redundante de fatores de regulação da transcrição do tipo bZIP a partir de dados do genôma de Arabidopsis thaliana. Os fatores bZIP de Arabidopsis foram ordenados em treze famílias de proteínas evolutivamente relacionadas e essa classificação foi usada para organizar os cDNAs de cana de açúcar que codificam proteínas bZIP. Além disso, mostramos que essa classificação poderá ser útil para definir Putative Clusters of Orthologous Groups de reguladores bZIP de plantas superiores.5560Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Functional and evolutionary analyses of the miR156 and miR529 families in land plants

    Get PDF
    Abstract\ud \ud Background\ud MicroRNAs (miRNAs) are important regulatory elements of gene expression. Similarly to coding genes, miRNA genes follow a birth and death pattern of evolution likely reflecting functional relevance and divergence. For instance, miRNA529 is evolutionarily related to miRNA156 (a highly conserved miRNA in land plants), but it is lost in Arabidopsis thaliana. Interestingly, both miRNAs target sequences overlap in some members of the SQUAMOSA promoter-binding protein like (SPL) family, raising important questions regarding the diversification of the miR156/miR529-associated regulatory network in land plants.\ud \ud \ud Results\ud In this study, through phylogenic reconstruction of miR156/529 target sequences from several taxonomic groups, we have found that specific eudicot SPLs, despite miRNA529 loss, retained the corresponding target site. Detailed molecular evolutionary analyses of miR156/miR529-target sequence showed that loss of miR529 in core eudicots, such as Arabidopsis, is correlated with a more relaxed selection of the miRNA529 specific target element, while miRNA156-specific target sequence is under stronger selection, indicating that these two target sites might be under distinct evolutionary constraints. Importantly, over-expression in Arabidopsis of MIR529 precursor from a monocot, but not from a basal eudicot, demonstrates specific miR529 regulation of AtSPL9 and AtSPL15 genes, which contain conserved responsive elements for both miR156 and miR529.\ud \ud \ud Conclusions\ud Our results suggest loss of functionality of MIR529 genes in the evolutionary history of eudicots and show that the miR529-responsive element present in some eudicot SPLs is still functional. Our data support the notion that particular miRNA156 family members might have compensated for the loss of miR529 regulation in eudicot species, which concomitantly may have favored diversification of eudicot SPLs.We thank Dr. Scott Poethig for 35S::AtMIR156a seeds; Dr. Peter Huijser for\ud spl9;spl15 seeds; Dr. Renato Vicentini for initial bioinformatic analyses and\ud helpful discussions; and Dr. Luiz Del Bem for initial phylogenetic analyses.\ud This work was supported by the State of Sao Paulo Research Foundation,\ud FAPESP, Brazil (grants no. 07/58289-5 and 12/51146-2). EGOM was a recipient\ud of a fellowship from Coordination for the Improvement of Higher Education\ud Personnel (CAPES, Brazil). GFFS (from Centro de Energia Nuclear na\ud Agricultura –CENA/USP) and EMS were recipients of a fellowship from the\ud State of Sao Paulo Research Foundation, FAPESP, Brazil

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments

    Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions

    Get PDF
    Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (~10 Gb) and a high content of repetitive regions. An approach using genomic, transcriptomic, and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. The hypothetical HP600 and Centromere Protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behaviors of this complex polyploid. The physically linked side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog region with all haplotypes of HP600 and CENP-C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing partial duplications of HP600 and CENP-C (paralogs). This duplication resulted in a non-expressed HP600 pseudogene and a recombined fusion version of CENP-C and the orthologous gene Sobic.003G299500 with at least two chimeric gene haplotypes expressed. It was also determined that it occurred before Saccharum genus formation and after the separation of sorghum and sugarcane. A linkage map was constructed using markers from nonduplicated Region01 and for the duplication (Region01 and Region02). We compare the physical and linkage maps, demonstrating the possibility of mapping markers located in duplicated regions with markers in nonduplicated region. Our results contribute directly to the improvement of linkage mapping in complex polyploids and improve the integration of physical and genetic data for sugarcane breeding programs. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding complex polyploid genomes
    corecore